

IPv6 Allocation Policy Proposal

Mirjam Kühne, RIPE NCC

http://www.ripe.net

Outline

- Initial Address Needs
- Initial Allocation Size
- Subsequent Allocation
- Utilisation Rate

Proposed Allocation Principles

See summary at top of mail

IPv6 Address Needs

- Recognise existing infrastructure where relevant
 - on assumption of transition to IPv6
 - or co-existence of IPv4 and IPv6 (dual-stack)
- Or evaluate immediate address needs
 - slow start mechanism applies to new networks

Initial Address Needs

- How to determine initial IPv6 address needs?
- 1. Organisation with existing IPv4 network
- 2. Organisation with existing IPv6 network
- 3. Organisation with IPv4 and IPv6 networks
- 4. Organisation without existing network

1. Existing IPv4 Network

- Address needs assessed according to existing IPv4 infrastructure and customers
 - recognising demonstrated needs and experience
 - IPv4 track record when influential to IPv6 needs
 - for example
 - number of registered customer assignments
 - number of dialup ports or customers
 - homes passed by cable
 - addresses required for other IPv4 services

2. Existing IPv6 Network

- IPv6 address space from upstream ISP or 6BONE
- Address needs assessed according to existing IPv6 infrastructure and customers
 - assuming transition to PA IPv6 space
- Address needs determined by # of site assignments
 - either equivalent to current # of addresses held
 - or according to previous method (IPv4)

3. Existing IPv4 and IPv6 networks

- Assess networks separately
 - principles already described
- Total needs determined accordingly
 - sum of total address space needs

4. Organisation without Network

- Slow start mechanism
 - default initial allocation size
 - subsequent allocation size based on utilisation rate
- Address needs based on deployment plan
 - total leased line customer capacity
 - number of dial-up customers
 - number of homes passed

Initial Allocation Size

Currently:

- initial allocation /35
- based on IPv4 13 bits of site address space
- slow start for all initial allocations ('one-size-fits-all')

New Proposal:

- allocation size depending on existing network
- slow start mechanism
 - only for new networks
- reduce minimum allocation
 - to ensure easy entry into the IPv6 industry

Subsequent Allocations

- Subsequent allocation when utilisation rate reached
 - according to a defined Host Density (HD)-ratio factor
- Size of subsequent allocation
 - to satisfy 2 year requirement
 - at least 1 bit shorter
- Aggregatable allocations made on best effort basis
 - "binary chop"

Utilisation Rate

- IPv4
 - 80% assigned
- Current IPv6 policy
 - 80% sub-allocated
- Proposed IPv6 policy
 - HD-ratio instead of %

Utilisation Threshold – HD Ratio

 "Host Density Ratio" provides utilisation limit which decreases as address space grows:

$$HD-Ratio = \frac{\ln(assigned)}{\ln(available)}$$

- » assigned = number of end addresses assigned
- » available = total number of addresses available
- Based on H-Ratio defined in RFC1715 (1994)
 - -draft-durand-huitema-h-density-ratio-02.txt

Utilisation Threshold – HD Ratio

 Use HD Ratio to determine when an address block can be considered "utilised"

threshold =
$$2^{(site - bits \times HD - Ratio)}$$

- threshold = site addresses to be utilised
- site_bits = 48 IPv6 prefix

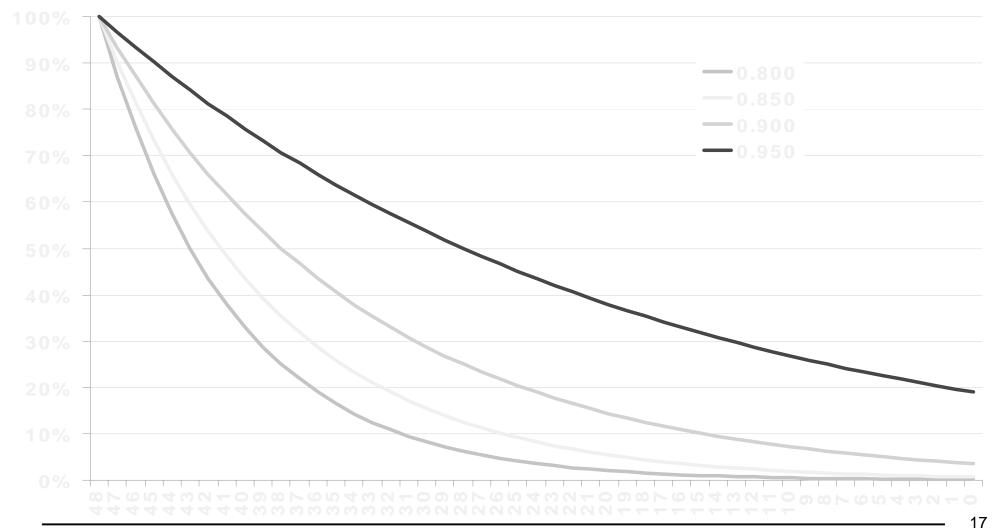
/	X /48
IPv6 Prefix	48-X

Example: HD Ratio = 0.9

$$threshold = 2^{(site_bits \times 0.9)}$$

v6 prefix	Site addr bits	Total site addrs	Threshold	Util%
42	6	64	42	66.0%
36	12	4096	1783	43.5%
35	13	8192	3327	40.6%
32	16	65536	21619	33.0%
29	19	524288	140479	26.8%
24	24	16777216	3178688	18.9%
16	32	4294967296	467373275	10.9%
8	40	1099511627776	68719476736	6.3%
3	45	35184372088832	1554944255988	4.4%

Example: HD Ratio = 0.8


$$threshold = 2^{(site_bits \times 0.8)}$$

v6 prefix	Site addr bits	Total site addrs	Threshold	Util%
42	6	64	28	43.5%
36	12	4096	776	18.9%
35	13	8192	1351	16.5%
32	16	65536	7132	10.9%
29	19	524288	37641	7.2%
24	24	16777216	602249	3.6%
16	32	4294967296	50859008	1.2%
8	40	1099511627776	4294967296	0.4%
3	45	35184372088832	68719476736	0.2%

16

Choice of HD Ratio

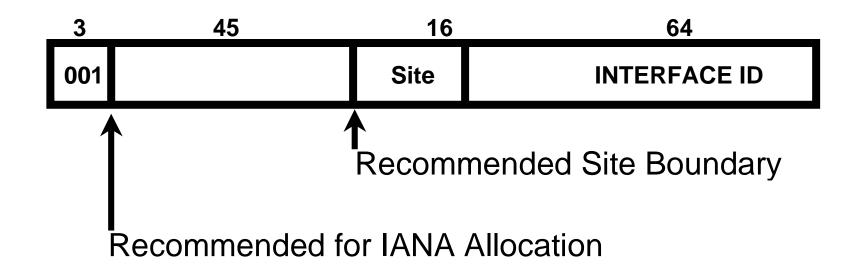
Qualification Criteria

- Assess prefix requirement based on address requirement and HD-Ratio
 - e.g. if require 12,000 /48s, prefix is /32
 - e.g. if require 200,000 /48s, prefix is /29
- Prefix is allocated if >= minimum allocation
 - also if peering with 3 or more others
 - required to renumber from existing space?
 - other criteria as well?

Qualification Criteria – option 2

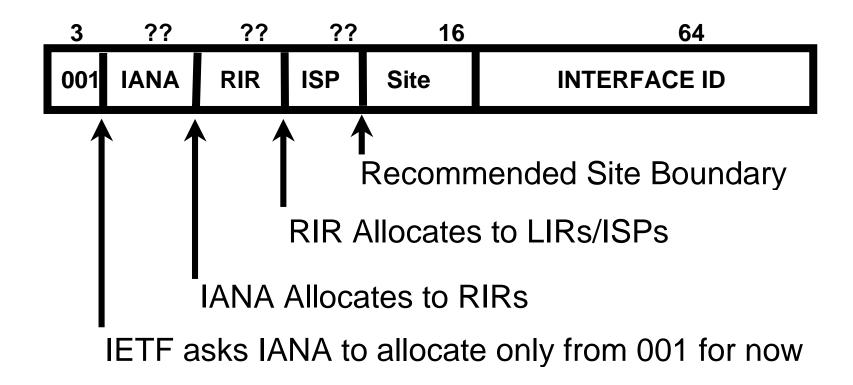
- Establish lower qualification threshold level for receiving minimum allocation?
- For instance...
 - -Minimum allocation may be /32 (example)
 - 16 bit site address space, provides 64K sites
 - -"Qualification threshold" may be /36 (example)
 - If organisation reaches threshold, /32 allocation is made
 - At HD Ratio 0.8 (18.9% of /36) this is 776 sites
 - -Ratio of address requirement to initial allocation
 - In this example, ratio = 776:64K = 1:84

Current (Old) format boundaries

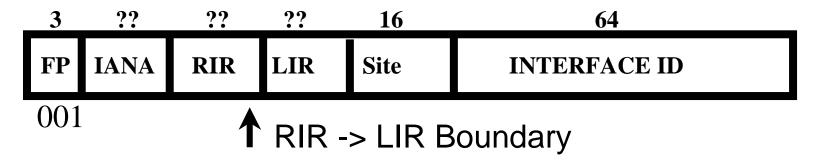

 Will change after recent discussions between the IETF & the RIRs

```
+--+----+
| 3 | 13 | 6 | 13 | 16 |
                      64 bits
+--+----+
FP TLA sub Res NLA SLA Interface
| ID | TLA | ID | ID |
+--+---+--+--+-----
      /23 /29 /35 /48
               /64
<--- public topology -->
              <-site->
                   <----Interface--->
```

(RFC 2374 - Mixes technology and policy)


New IPv6 Unicast Address: the Technology and Recommendations

Technology is what can be Hard-Coded in Routers


IPv6 Unicast Address: the Policy Space

http://www.ripe.net/presentations/ipv6-taipei2001/index.html

New Policy Developments

Slow Start

- minimum initial allocation (size TBD)
- subsequent allocation based on usage rate
- based on current practice (in IPv4)

Sub-allocations to downstream ISPs

- based on need
- size TBD

Policy Developments Summary

- IETF/IAB input to all RIRs:
 - /48 to all end users
 - Exception: no need for multiple subnets /64
- Under discussion:
 - Removing current policy boundaries
 - Initial allocation size, Utilisation
 - Extension of bootstrap phase
 - IPv6 addresses to Internet Exchange Points
- Close co-ordination between RIRs

Latest Policy Proposals - hot of the press -

- Recognise existing infrastructure
 - IPv4 and IPv6
- Reduce existing minimum allocation for new orgs.
 - to ensure easy entry into IPv6 industry
- Slow Start Mechanism
 - only for new networks
 - minimum allocation size can be exceeded where requirement is shown

Presentations & Discussion Papers

- RIR Allocation Statistics http://www.aso.icann.org/rirs/stats/index.html
- IAB/IESG Addressing recommendations http://www.ietf.org/internet-drafts/draft-iesg-ipv6-addressingrecommendations-03.txt
- IPv6 Presentations at last RIPE Meeting http://www.ripe.net/ripe/meetings/archive/ripe-39/index.html
- IPv6 Addressing policy and technology http://www.ripe.net/presentations

Pointers & References

IPv6 Allocation Policies

http://www.ripe.net/ipv6.html

http://www.ripe.net/ripe/docs/ripe-196.html

RIPE Meetings & Mailing lists

http://www.ripe.net/meetings/ripe/index.html

http://www.ripe.net/ripe/wg/lir/index.html

http://www.ripe.net/ripe/wg/ipv6/index.html

RIPE Documents & FAQ

http://www.ripe.net/ripe/docs/

http://www.ripe.net/ripencc/faq/registration/qa7.html

Questions

http://www.ripe.net/presentations